24.03.2022, 14:10
Ich habe mal (vermutlich in den Mathematik-Rubriken im Spektrum der Wissenschaft) ein Problem gesehen, das ich nicht im Internet finde.
Es wurde mal mit "n-value Problem" , "Wert/Preis einer Zahl" oder ähnlich bezeichnet.
Es ging darum, eine natürliche Zahl auf 1 zu bringen, indem man
a) die Zahl um 1 vergrößert oder verkleinert (das kostet einen Minuspunkt)
b) einen (ganzzahligen) Teiler abspaltet und mit der größeren (genauer: nicht kleineren) Zahl weitermacht (das kostet keinen Minuspunkt)
Beispiel: Ausgangszahl 10
10 -> 9 (-1, 1 Minuspunkt) -> 8 (-1, 1 Minuspunkt) -> 4 (2 abgespalten) -> 2 (2 abgespalten) -> 1 (-1, 1 Minuspunkt) => dieser Weg kostet 3 Minuspunkte
10 -> 5 (2 abgespalten) -> 4 (-1, 1 Minuspunkt) -> 2 (2 abgespalten) -> 1 (-1, 1 Minuspunkt) => dieser Weg kostet 2 Minuspunkte
Die Anzahl Minuspunkte, die man mindestens braucht, ist als "Wert" der Zahl definiert, und das Problem ist dann, gibt es eine obere Schranke für den Wert beliebig großer Zahlen, bzw. welches überhaupt die kleinsten Zahlen sind, die einen Wert von 1,2,3,... haben.
--Jessica
Es wurde mal mit "n-value Problem" , "Wert/Preis einer Zahl" oder ähnlich bezeichnet.
Es ging darum, eine natürliche Zahl auf 1 zu bringen, indem man
a) die Zahl um 1 vergrößert oder verkleinert (das kostet einen Minuspunkt)
b) einen (ganzzahligen) Teiler abspaltet und mit der größeren (genauer: nicht kleineren) Zahl weitermacht (das kostet keinen Minuspunkt)
Beispiel: Ausgangszahl 10
10 -> 9 (-1, 1 Minuspunkt) -> 8 (-1, 1 Minuspunkt) -> 4 (2 abgespalten) -> 2 (2 abgespalten) -> 1 (-1, 1 Minuspunkt) => dieser Weg kostet 3 Minuspunkte
10 -> 5 (2 abgespalten) -> 4 (-1, 1 Minuspunkt) -> 2 (2 abgespalten) -> 1 (-1, 1 Minuspunkt) => dieser Weg kostet 2 Minuspunkte
Die Anzahl Minuspunkte, die man mindestens braucht, ist als "Wert" der Zahl definiert, und das Problem ist dann, gibt es eine obere Schranke für den Wert beliebig großer Zahlen, bzw. welches überhaupt die kleinsten Zahlen sind, die einen Wert von 1,2,3,... haben.
--Jessica