25.11.2008, 14:55
Nein, geht nicht.
Frage: Wieviele verschiedene Sudokus kann man aus deinem Ur-Sudoku durch die von dir genannten Operationen erzeugen? Dazu muß man sich überlegen, welche derartigen Operationen überhaupt möglich sind:
1) Man kann das gesamte Sudoku um 90°, 180° oder 270° drehen. Aus einem Sudoku entstehen damit vier verschiedene, macht also einen Faktor 4.
2) Man kann das gesamte Sudoku spiegeln; da wir Drehungen bereits berücksichtigt haben, ist es egal, an welcher Achse wir spiegeln - Faktor 2.
3) Wenn wir das Diagramm in drei Blöcke zu je drei Zeilen zerlegen, können wir diese Blöcke beliebig permutieren; dafür gibt es 3!=3*2*1=6 Möglichkeiten. Innerhalb jedes Blocks können die je drei Zeilen ebenfalls beliebig permutiert werden, das ergibt noch dreimal den Faktor 3!. Insgesamt ergibt sich also ein Faktor (3!)^4 = 1296.
4) Das Gleiche gilt natürlich analog für die Spalten, ergibt nochmal den Faktor 1296.
5) Und schließlich können wir die Ziffern beliebig permutieren, damit erhalten wir den Faktor 9! = 362880.
(Ich hoffe, ich habe nichts vergessen...)
Aus einem komplett ausgefüllten Sudoku erhalten wir also insgesamt
4*2*1296*1296*362880 = 4.875.992.432.640 verschiedene (ausgesprochen: fast 5 Billionen).
Ein Mathematiker hat jedoch mal ausgerechnet, daß es insgesamt 6.670.903.752.021.072.936.960 (über 6 Trilliarden) verschiedene komplett gelöste Sudoku gibt (Quelle: Wikipedia). Die können also bei weitem nicht alle aus einem Ur-Sudoku stammen.
Grüße,
uvo
Frage: Wieviele verschiedene Sudokus kann man aus deinem Ur-Sudoku durch die von dir genannten Operationen erzeugen? Dazu muß man sich überlegen, welche derartigen Operationen überhaupt möglich sind:
1) Man kann das gesamte Sudoku um 90°, 180° oder 270° drehen. Aus einem Sudoku entstehen damit vier verschiedene, macht also einen Faktor 4.
2) Man kann das gesamte Sudoku spiegeln; da wir Drehungen bereits berücksichtigt haben, ist es egal, an welcher Achse wir spiegeln - Faktor 2.
3) Wenn wir das Diagramm in drei Blöcke zu je drei Zeilen zerlegen, können wir diese Blöcke beliebig permutieren; dafür gibt es 3!=3*2*1=6 Möglichkeiten. Innerhalb jedes Blocks können die je drei Zeilen ebenfalls beliebig permutiert werden, das ergibt noch dreimal den Faktor 3!. Insgesamt ergibt sich also ein Faktor (3!)^4 = 1296.
4) Das Gleiche gilt natürlich analog für die Spalten, ergibt nochmal den Faktor 1296.
5) Und schließlich können wir die Ziffern beliebig permutieren, damit erhalten wir den Faktor 9! = 362880.
(Ich hoffe, ich habe nichts vergessen...)
Aus einem komplett ausgefüllten Sudoku erhalten wir also insgesamt
4*2*1296*1296*362880 = 4.875.992.432.640 verschiedene (ausgesprochen: fast 5 Billionen).
Ein Mathematiker hat jedoch mal ausgerechnet, daß es insgesamt 6.670.903.752.021.072.936.960 (über 6 Trilliarden) verschiedene komplett gelöste Sudoku gibt (Quelle: Wikipedia). Die können also bei weitem nicht alle aus einem Ur-Sudoku stammen.
Grüße,
uvo