Ok, I try to add some details I see different:
1st puzzle: The not-gray cells don't have to be different (in the example, a 1 and a 5 are in both grids on the same place), just the gray are the same.
7th puzzle: There is another condition. If two numbers in the same column share a border, the bigger one has to be on top.
10th puzzle: I guess the bigger number has also to be the bigger written number in a cell.
16th puzzle: I don't think the angle matters. In my opinion, the number where a pair of arrows starts has to lie between the numbers at the end of the arrows (with "lie between" I mean, it is bigger than one and smaller than the other digit).
18th puzzle: I think the outside numbers indicate the first odd and even number in the according row or column (Google translation:
"figure out the puzzle aspect is that column
Odd and even numbers in the foreground.")
19th puzzle: The arrows point to those neighbouring numbers, which difference to the circled number is minimal (e.g. the arrows of the circled 6 in the first column points to the 3 and the 9 (difference each 3) and not to the 2 (difference 4).
23: Even/Odd seems to matter, and the orthogonally neighbouring numbers, but no idea what exactly. Google translation of the "long" rule:
"even if the numbers come in, that figure
Ma NANAME around the borders Horizontal Vertical
Shows the number of even-go boxes, the number entering the
If the odd-shaped, that figure Horizontal Vertical
The odd entry into the cell borders around NANAME
Indicate the number."
25th: The numbers on the arrow are not only increasing, they have to form an arithmetic sequence (thus, the differences of consecutive numbers are equal).
With the other puzzles, I agree. So just numbers 3 and 23 is not clear for me.
When will be the competition time? Maybe, I will participate. Already the rule-guessing was a lot of fun.
Greets,
Philipp
PS: I had to delete some parts of the translations containing japanese signs, otherwise I could not post.
1st puzzle: The not-gray cells don't have to be different (in the example, a 1 and a 5 are in both grids on the same place), just the gray are the same.
7th puzzle: There is another condition. If two numbers in the same column share a border, the bigger one has to be on top.
10th puzzle: I guess the bigger number has also to be the bigger written number in a cell.
16th puzzle: I don't think the angle matters. In my opinion, the number where a pair of arrows starts has to lie between the numbers at the end of the arrows (with "lie between" I mean, it is bigger than one and smaller than the other digit).
18th puzzle: I think the outside numbers indicate the first odd and even number in the according row or column (Google translation:
"figure out the puzzle aspect is that column
Odd and even numbers in the foreground.")
19th puzzle: The arrows point to those neighbouring numbers, which difference to the circled number is minimal (e.g. the arrows of the circled 6 in the first column points to the 3 and the 9 (difference each 3) and not to the 2 (difference 4).
23: Even/Odd seems to matter, and the orthogonally neighbouring numbers, but no idea what exactly. Google translation of the "long" rule:
"even if the numbers come in, that figure
Ma NANAME around the borders Horizontal Vertical
Shows the number of even-go boxes, the number entering the
If the odd-shaped, that figure Horizontal Vertical
The odd entry into the cell borders around NANAME
Indicate the number."
25th: The numbers on the arrow are not only increasing, they have to form an arithmetic sequence (thus, the differences of consecutive numbers are equal).
With the other puzzles, I agree. So just numbers 3 and 23 is not clear for me.
When will be the competition time? Maybe, I will participate. Already the rule-guessing was a lot of fun.
Greets,
Philipp
PS: I had to delete some parts of the translations containing japanese signs, otherwise I could not post.