Themabewertung:
  • 0 Bewertung(en) - 0 im Durchschnitt
  • 1
  • 2
  • 3
  • 4
  • 5
Ice Slide Puzzle
#1
Hi folks, I've just uploaded a puzzle to the main site:

https://logic-masters.de/Raetselportal/R...?id=0008X6.

I would very much appreciate a German translation, plus any and all feedback.

Here's the Cracking the Cryptic link.

And the rules:
Normal sudoku rules apply.

One digit in each row, column and box is circled. Exactly one of each digit from 1 to 6 is circled.

Draw five orthogonal paths, each beginning at the circled 1 and ending at each of the other circled digits.

The paths may only change direction when they hit a wall. Wherever two non-circled digits of the same parity (odd or even) are orthogonally adjacent, the border between them is a wall.

(Note: the edges of the grid are not walls - if your path leads off the edge of the grid, it it finished.)

Also, I couldn't get the HTML link to work properly on the main site. Any advice?
Zitieren
#2
Hey Fletcher,

You can use this example to add the link:

<a href="https://f-puzzles.com/?id=...">link description</a>
Zitieren
#3
(25.01.2022, 01:56)Fletcher schrieb: And the rules:
Normal sudoku rules apply.

One digit in each row, column and box is circled. Exactly one of each digit from 1 to 6 is circled.

Draw five orthogonal paths, each beginning at the circled 1 and ending at each of the other circled digits.

The paths may only change direction when they hit a wall. Wherever two non-circled digits of the same parity (odd or even) are orthogonally adjacent, the border between them is a wall.

(Note: the edges of the grid are not walls - if your path leads off the edge of the grid, it it finished.)

German translation:

Es gelten die normalen Sudoku-Regeln.

In jeder Reihe, Spalte und Region ist eine Zahl umkreist. Insgesamt ist jede Zahl von 1-6 ist genau einmal umkreist.

Es müssen fünf Pfade gefunden werde, deren Zellen orthogonal zusammenhängen. Jeder Pfad beginnt an der umkreisten 1 und endet an jeweils einer anderen umkreisten Zahl.

Die Pfade dürfen ihre Richtung nur ändern, wenn Sie auf eine Wand treffen. Immer wenn zwei nicht-eingekreiste Zahlen die selbe Parität haben (beide gerade oder beide ungerade) bildet die gemeinsame Kante der Zellen automatisch eine Wand.

Hinweis: Die Ränder des Rätselgitters sind keine Wände in dem Sinne, dass dort ein Richtungswechsel stattfinden kann. Sobald ein Pfad über den Rand des Rätselgitters hinaus führen würde, endet er dort.
Zitieren
#4
I've now updated the puzzle. Thanks a million!
Zitieren
#5
Hi everyone, I've found that the puzzle has more than one solution. I'm deactivating the puzzle for the time being until I can fix it. It will likely happen some time this evening.
Zitieren
#6
(25.01.2022, 12:11)Fletcher schrieb: Hi everyone, I've found that the puzzle has more than one solution. I'm deactivating the puzzle for the time being until I can fix it. It will likely happen some time this evening.

I liked the logic behind the possible placing of circles. So i will give it a try for sure.
Zitieren
#7
I've now updated the puzzle with an extra given digit so that there is a unique solution. It can be found here: https://bit.ly/3o0yxjx
Zitieren
#8
(25.01.2022, 19:37)Fletcher schrieb: I've now updated the puzzle with an extra given digit so that there is a unique solution. It can be found here: https://bit.ly/3o0yxjx

Phew... that fits my solution  Tongue
Zitieren
#9
And now please activate the diagram in the German version again  Square .

In the CtC-version I see the hint "The paths may overlap.". Since I first somewhat automatically assumed this may not be the case I suggest to take this detail into the portal as well. In German that is: "Die Pfade dürfen sich überlappen."
Zitieren
#10
Sorry about that mistake! I've now added the image and link to the DE version, as well as the overlapping paths text. Thank you!
Zitieren


Möglicherweise verwandte Themen...
Thema Verfasser Antworten Ansichten Letzter Beitrag
  New puzzle creator Twan2797 4 970 25.09.2022, 09:08
Letzter Beitrag: Pallando
  Camels and Penguins puzzle, looking for tester Thorsby 1 1.523 21.03.2021, 02:21
Letzter Beitrag: Thorsby
  Puzzle Up 2020 Dandelo 7 3.469 22.12.2020, 18:48
Letzter Beitrag: Dandelo
  puzzle-draw mit neuem Webinterface rob 16 14.777 04.12.2018, 15:39
Letzter Beitrag: rob
  Neuer Puzzle-Blog logik66 5 12.819 05.09.2017, 23:14
Letzter Beitrag: JonaS2010

Gehe zu:


Benutzer, die gerade dieses Thema anschauen: 1 Gast/Gäste